
PAM2000 1

Network Performance Visualization: Insight
Through Animation.

Brown J.A., McGregor A.J., Braun H-W

Abstract— In passive and active measurement
projects it is easy to generate large volumes of raw
data. Although this allows for detailed analysis, the
large volume is an impediment to understanding
the data and locating interesting events. One ap-
proach to this problem is to use visualization tools
to produce a graphical rendering of the data that
allows a user to explore the data “by eye.”

Cichlid is a visualization tool that provides high-
quality 3-D, animated visualizations of a wide range
of network analysis related data sets. Cichlid al-
lows the viewer to explore and interact with the
data sets in real time. It was designed with re-
mote data generation and machine independence in
mind; data is transmitted via TCP from any num-
ber of sources (data servers) to the visualization en-
gine (the client), which displays them concurrently.

Cichlid features real-time data display, point-
and-click user feedback, and dynamic data coloring
and labeling. Sequences of frames may be captured
for later encoding in a standard movie format and
single frames may be rendered at arbitrary resolu-
tions.

Using Cichlid has allowed us to gain new insights
into the data we collect and will, we feel sure, aid
others in the networking community, particularly
network providers, to more easily gain an overview
of the data that they collect.

Keywords— Network performance, visualization,
OpenGL.

I. Introduction

If a picture is worth a thousand words, then an
animated visualization is worth a thousand static
graphs.

The National Laboratory for Applied Network
Research (NLANR)[1] has a number of network
measurement projects that produce large volumes
of data. These include the OCxMON Passive

J.A. Brown and H-W Braun are with the National Laboratory
of Applied Network Research (NLANR), San Diego Supercom-
puter Center, University of California, San Diego, La Jolla, USA
Email:{jabrown,hwb}@nlanr.net

A.J. McGregor is with The University of Waikato, Hamilton,
New Zealand. Email: tonym@cs.waikato.ac.nz

This work is funded, in part, by NSF Cooperative Agreement
No. ANI-9807479. The U.S. government has certain rights in
this material.

Monitoring and Analysis project (PMA), the Ac-
tive Monitoring Project (AMP), and the collection
and analysis of SNMP and BGP data.[2][3] All to-
gether, these projects produce gigabytes of data
and thousands of Web pages of graphs and sum-
maries each day. A large volume of data is neces-
sary because it is not known apriori which parts
of the data will contain interesting features and
because different users are interested in different
parts of the measured systems. As a consequence
of the scale of the systems, it is not humanly pos-
sible for users to scan all of the data or web pages
for interesting artifacts, but in not doing so, im-
portant network events may be overlooked. As
one approach to address this need, NLANR has
developed the Cichlid[4] tool for visualizing and
animating data sets.

Cichlid allows its users to view data sets in three
dimensions, as if they were physical objects. The
data can be animated (to show changes over time)
and the point of view can be changed (zooming
and moving around the data). Often, a physical
analogy of the data can be developed; for exam-
ple, network delays between a collection of sites,
visualized as an interpolated surface and animated
in time, gives a display similar to the view from
flying over mountainous terrain (see figure 1). Dif-
ferent landscapes are related to different network
conditions. We have found that using Cichlid for
network data visualization, provides new insights
into the data we collect.

Cichlid is written in C, using the OpenGL[5] and
GLUT[6] graphics libraries. The code is portable
and is currently being used on the FreeBSD,
Linux, Microsoft Windows, and IRIX platforms.
The source code for Cichlid is freely available, as
are the sources for GLUT, a window system in-
terface for OpenGL programs, and for Mesa[7], an
OpenGL-like graphics library. Thus, the tool can
be built for free, and used on standard PC hard-
ware, as well as high-end SGI workstations.



PAM2000 2

Fig. 1. Network “Terrain”

Cichlid is implemented as a client-server sys-
tem; one or more data servers provide raw data
through TCP connections to a client which ren-
ders the data graphically. Splitting the system
this way allows the data server(s) to be on one or
more remote machines, possibly the systems where
the data are collected or stored. The client, which
performs the rendering, is run on the user’s work-
station. Care has been taken in the design of the
protocols and support software to minimize the
data transfer required between the clients and the
servers.

II. Functionality

A. Types of Visualization

Cichlid currently supports two types of graphs:
3-D bar charts, which are useful for displaying nu-
meric quantities that are functions of two inde-
pendent variables, and vertex/edge graphs, which
are good for representing topology. Cichlid bar
charts have been used to show data sets that in-
clude matrices of network delays between pairs of
sites, traffic distribution over address blocks, as
well as traffic volume by protocol and source. The
vertex/edge mode has been used to visualize data
sets that include latencies from a single site to
others, as well as those showing network evolution
over time. In most cases, these data sets are ani-
mated in time by repeatedly supplying data from
successive measurements at real-time intervals.

The two types of graphs that Cichlid supports
are described below:
• Bar Charts
A bar chart object (see figures 2 and 3) consists
of a rectangular array of “bars.” Each bar con-

One "bar" of
a bar chart.

One "stack" of
a "bar".

Fig. 2. Bar Chart Components

(a) Stacked Bar Chart

(b) Interpolated Surface

Fig. 3. Examples of Cichlid Bar Charts



PAM2000 3

Vertices

An Edge

Fig. 4. Vertex-Edge Graph Components

sists of one or more “stacks,” and each stack con-
tains height and color attributes. The stacks are
placed end-to-end to form the bars, and the bars
are placed on the base plane at evenly spaced in-
tervals to form the bar chart.
• Vertex-Edge Graphs
A vertex-edge graph (see figures 4 and 5) consists
of two arrays: one of vertex structures, and one of
edge structures. This corresponds closely to the
abstract mathematical representation of a graph
as G(V,E), except that the vertices and edges in
Cichlid contain not only connectivity information,
but also graphical attributes. Each vertex is de-
fined by a VtxInfo structure, which contains a 3-D
location vector, a relative size parameter, color in-
formation, and a drawing style hint. Each edge is
defined by an EdgeInfo structure, which indicates
the vertices where the edge terminates, the direc-
tionality of the edge, size, color, and style. The
vertices are defined to exist in a 3-D coordinate
space, which is declared ahead of time; this space
is mapped to the final graphical representation.
The edges are defined to connect pairs of vertices.
This information does not in itself define a graphi-
cal representation; it describes the graph, and pro-
vides hints as to how it should be drawn. This is
a very flexible model in that arbitrary graphs can
be displayed; the only condition is that they must
be laid out in Euclidean space.

Figure 6 shows examples of Cichlid visualiza-
tions of real data. Figure 6(a) is a plot of bucketed
packet lengths over time. Each bucket along the
X-axis represents a range of packet sizes. Older
data samples are spread along the Y-axis. The
height of each bar indicates the number of pack-
ets that fall in a particular bucket during a sample
interval. Figure 6(b) is an address space visualiza-

Fig. 5. Vertex-Edge Graph Example

(a) Packet Length Distribution Over Time

(b) Traffic Volume By Address Block

Fig. 6.



PAM2000 4

3D Animations

source

user
code code

Cichlid

Data Server

data
source

user
code code

Cichlid

Data Server

data
source

user
code code

Cichlid

Data Server

application
dependent

data

� ��
� ��

TCP

TCP

TCP

Engine

code
Cichlid

independent
application

Visualization

Fig. 7. Cichlid Components

tion. Each bar corresponds to a portion of the IP
address space; the height represents the number
of packets sent during the previous sample.

Regardless of the types of graphs being dis-
played, the user’s point of view can be changed in-
dependently of the data objects, allowing the data
sets to be explored from different angles. Render-
ing parameters can be adjusted by the user, allow-
ing them to view the objects as solids, wire-frame
models, and in the case of bar charts, interpolated
surfaces.

B. Distribution of Function

A visualization built using Cichlid is composed
of two sets of components, shown in figure 7. The
system contains application-specific code (which
produces data), and an application-independent
visualization engine (which consumes data and
renders the visualization). Data is transported be-
tween these two components using TCP connec-
tions, with the data producers acting as servers
and the data consumers as clients.

While the data normally flows from the server
to the client, some data moves in the opposite
direction. A user is able to query the server by
clicking on a component of the visualization. The
query is sent to the data server which replies with
a text string. The visualization engine, then dis-
plays the string as part of the visualization. This
can be used, for example, to support pop-up la-
bels indicating the source of a measurement (see
figure 6[b]).

Cichlid provides an entire visualization infras-
tructure, including the rendering and data trans-
fer functionalities. The Cichlid user who wishes

to build a new visualization need only write code
in a Cichlid server which manipulates that data
to conform to one of Cichlid’s data models. The
Cichlid system then handles the data transport,
output visualization, and user interaction. Since
the infrastructure itself is data and application-
independent, creating a new visualization is re-
duced to merely having to write code to import
application-specific data and hand it to Cichlid
through a function-call interface. This allows new
visualizations to be developed rapidly and with a
minimum of effort.

III. Design

The Cichlid visualization system performs three
primary functions:
1. Abstraction and Modeling - representing real-
world data in an abstract and application-
independent manner.
2. Collection and Distribution - accepting data at
the sources, and delivering it to the visualization
engine.
3. Visualization - rapidly rendering data into at-
tractive visualizations.

A. Abstraction and Modeling

A powerful feature of Cichlid is that its internal
data representations are not tied to any particular
application; they are abstract models. Generally,
when user data enters the system, it goes through
user code which manipulates the data to fit one
of the models Cichlid provides. We call these ab-
stract models Cichlid “data sets.” The DataSet
object family is responsible for representing and
operating on data sets efficiently, and for providing
architecture-independent external representations
on demand. It is worth noting that these data
models are not inherently tied to any particular
graphical representation or display API.

Cichlid provides several different data models.
Each is designed to be powerful enough to repre-
sent useful data, simple enough to be convenient,
and general enough so that each new application
that comes along does not require specific exten-
sions to the models. As much as possible, the
graphical details of the visualization are left out
of the parameter set. There are no advanced vi-
sual parameters such as reflection, collision behav-
ior, transparency, or fogging specified in the data



PAM2000 5

models. Supporting such parameters would add
to the complexity of the underlying system and
burden the server writer by requiring more infor-
mation to be produced.

Some of the parameters in the data models are
fixed at the time that the DataSet objects are cre-
ated — for example, the coordinate spaces over
which vertex-edge graphs will be defined — but
most parameters can be changed at any time by
the data server. This flexibility allows for model-
ing (and visualizing) continuously changing data
sets.

The DataSet object family represents all of
the abstract data models supported by Cich-
lid. It includes methods to populate and up-
date the data models, and codecs to convert be-
tween the internal object representations and com-
pact, machine-independent external representa-
tions used to transport the objects to remote pro-
cesses.

The encoded data are typically transmitted over
wide-area networks, so the encoding schemes are
designed with an emphasis on saving space. To
facilitate this, the codecs can operate in a differen-
tial mode (encoding state changes in the objects),
if this encoding takes up less space than the object
itself.

Although minimizing the volume of data trans-
ferred is of primary importance, speed is also a
concern since CPU time is often at a premium at
the decoder, which is also the visualization client.
In particular, a tradeoff between speed and accu-
racy is made for floating-point values. Since the
spatial quantities involved in visualizations need
not vary over many orders of magnitude, and since
a small loss of accuracy does not affect the visual-
izations noticeably, floating point values are quan-
tized to fixed-width integers for transmission.

The DataSet object family contains several sub-
objects, one for each data model supported. The
DataSet object interface provides methods that
are common to all sub-objects, such as destruction
and encoding, and it exposes methods that are
specific to the sub-object types.

While methods to operate on the sub-objects
are provided, the means to explicitly reference
them are not; all exposed methods take DataSet
pointers. This adds the need for some run-
time pointer table lookups, but simplifies the pro-

gramming interface somewhat. All operations on
the DataSet objects must be performed through
method calls; the user is not free to assign di-
rectly to any members of a DataSet. This strictly
procedural interface allows the DataSet objects
to cheaply track state changes and perform dif-
ferential encoding, without having to do large set
comparisons.

B. Data Collection and Distribution

One of the key features of Cichlid is that it is a
distributed system. There are data servers, where
user data enters the system, and data clients,
which consume the data and generate visualiza-
tions. User code at the server converts the data
into one of Cichlid’s models as a DataSet object,
and built-in server code maintains the DataSet ob-
ject as well as connections to clients. The commu-
nications and protocol modules which the client
and server share are responsible for propagating
state changes from the server to the client in an
efficient and architecture-independent manner.

There are two phases of data collection that take
place in a Cichlid visualization. The first is when
user code collects application-specific data, ana-
lyzes them, and populates DataSet objects; the
second is when the Cichlid client collects the mod-
eled data from Cichlid servers. The data distribu-
tion takes place between the two: the DataSet is
encoded and distributed from the Cichlid servers
to waiting Cichlid clients.

The data collection code that abstracts the
application-specific data into DataSet models is
the responsibility of the server writer, since the
toolkit itself has no knowledge of the application
domain. The analysis code populates the DataSet
objects through calls to the accessor methods that
are exposed for manipulating the models. In prac-
tice, the user server code that does this is in-
voked from the Cichlid server library through one
of the function callbacks available — for exam-
ple, it can be configured to be invoked upon every
client request, or each time the server finds itself
with no immediate client requests pending. As
the user code manipulates the DataSet over time,
the DataSet model becomes a dynamic, abstract
representation of the data to be visualized.

The Cichlid server library handles the overall
control flow of the server. As clients can come



PAM2000 6

and go, it is the responsibility of the server library
to ensure that each client gets an accurate repre-
sentation of the DataSet model’s state at the time
it receives a request for it. Not only is it impor-
tant to transmit the state information correctly,
it’s also important to transmit it efficiently. The
server makes use of the codec methods provided
with the DataSet objects to assemble the raw data
to be transmitted to a given client; it uses the pro-
tocol and communications modules common to the
clients and servers to frame the data for transmis-
sion, and to perform all socket operations needed
to transport the data.

On the client side, the data distribution com-
pletes with the client receiving and decoding the
data, essentially reversing the steps that took
place in the servers. The client’s copy of the
DataSet object is thus set up as a mirror of the
one on the server. The client performs these op-
erations for each server to which it is currently
connected, collecting the data streams and keep-
ing all of the DataSet objects as up-to-date as the
performance of the network and the client allows.

To aid clients and servers in communicat-
ing with each other, and to prevent them from
attempting to communicate with incompatible
clients and servers (be they incompatible versions
of Cichlid, or the latest sendmail replacement), a
rudimentary greeting-handshake protocol is imple-
mented. This protocol uses a plain-text descrip-
tion of the fixed DataSet parameters as well as
the program and protocol version numbers. Us-
ing a text format has several advantages including
making it possible to identify orphaned servers by
simply using telnet to connect to them.

A simple framing protocol is also implemented,
in which all data sent between clients and servers
after the handshake is sent in complete “frames,”
which can vary in size from frame-to-frame, but
must have a predetermined size which cannot be
changed during transmission — much like a data-
gram. The protocol includes distinct headers to
help detect protocol errors, and provides multi-
plexing based upon a “frame type” parameter.
The protocol was designed so that many streams
could be processed in a nonblocking fashion with-
out the need for threading or additional processes.
This framing protocol runs on top of TCP, so is
not necessary to provide redundancy checking.

Interactive
Visualizations

High-res
Image Files

Animations

Other
Servers

Application
Data Sources

TCP

Data Server

Application-
-specific

Analysis Code
(from user)

Data-independent
Server Library 

(provided)Server API,
Callbacks

Abstract
Data Model

Visualization Client

Client Code:
Renderers,

User Interface, 
etc.

System Code:
OpenGL, GLUT,

etc.Event Callbacks,
Pixel Copies

Vertices, OGL
Parameters

Fig. 8. Cichlid Data Flow

Figure 8 illustrates the high-level layout and
data flow of a Cichlid visualization.

C. Data Visualization

The Cichlid client, the most complex part of the
system, is responsible for all of the visualization
functions. It has a set of renderer modules which
produce graphical representations of the abstract
data sets, as well as code to maintain the on-screen
visualization and to provide an interface to enable
users to interact with the displayed data sets.

The data provided by the user analysis code is
ultimately shipped to one or more clients for visu-
alization. The operations performed by each client
are more complex than those performed by the



PAM2000 7

servers; but since the client code operates solely on
abstract DataSet models, it requires no modifica-
tion to be used with new visualizations. The visu-
alization developer is thus insulated from the de-
tails of the graphics system, particularly from the
numerous calculations that must be performed,
and from the OpenGL API, which has a seem-
ingly endless number of state variables to worry
about.

The visualization client is responsible for main-
taining the display of all data from each of the
connected servers, for requesting new data from
the servers as it has the processing capacity to
handle more, and for interfacing with the visu-
alization user to allow them to interact with the
displayed graphs — changing viewpoints and ren-
dering settings, requesting the server to perform
application-dependent operations on the data, and
even allowing the user to request application-
dependent information about specific elements of
the displayed DataSet directly from the “user”
server code.

The primary source of complexity in the client
is in the code which performs the OpenGL render-
ings of the DataSet objects. Each DataSet sub-
object in the shared “data set” library has a corre-
sponding “renderer” in the client that is responsi-
ble for generating all the OpenGL calls to visualize
it. The renderers bypass the DataSet object’s pro-
cedural interface for speed. The renderers them-
selves store only ancillary graphical information
and drawing option settings. When they perform
the rendering, they read the data directly from
the DataSet objects. This violates the object-
abstraction model, but this is acceptable due to
the speed improvement achieved because the ren-
derer does not have to waste time copying large
amounts of information out of DataSets, and it
does not have to make method calls to get at the
data. While the function call overhead would not
ordinarily be a problem — it’s fine at the server
end — the renderer code may be called very fre-
quently, and each call can involve iterating over
the DataSet several times. Given this need for
speed, and that the renderers do not modify the
DataSet objects, the function call interface only
gets in the way. We trade cleanly decoupled ren-
derers and DataSet objects for speed.

The renderers corresponding to the various

DataSet sub-objects contain full knowledge of
the internals of that type of DataSet; they also
have several different strategies for rendering that
DataSet. The various strategies offer trade-offs
between rendering in a manner that more closely
matches the style hints provided in the DataSet,
and rendering in a manner that is as fast as pos-
sible.

IV. Strengths and Weaknesses

The strengths of the Cichlid system derive from
the fact that it is not designed for a specific visu-
alization. Requiring that the data be abstracted
before it enters the Cichlid system ensures data
independence. It does preclude detailed analy-
sis in the visualization client, and it complicates
user interaction with the data, since any requests
for information from, or detailed manipulation of,
the application-specific data must be handled re-
motely in the data server.

Portability is one of the principles underscor-
ing the entire design. The vast majority of the
system is written in ANSI C, with no dependen-
cies on a particular platform or on nonstandard
extensions to the C library. While this results in
code that is portable to different operating sys-
tems, Cichlid needs to perform graphical output,
interact with the user, do high-resolution timing,
and perform socket I/O, the specifics of which
are system-dependent. The use of the OpenGL
and GLUT APIs allow for platform-independent
graphics operations; but several extensions are
supported on specific platforms, such as the use
of Crystal Eyes stereo glasses on SGI worksta-
tions. In order to confine the scope of the system-
specific code, it is compartmentalized in special-
purpose modules, the most prominent of which are
the socket I/O module and the general-purpose
system-dependent module which handles simpler
things like timing, random number generation,
size-specific data type definitions, and header file
management. The primary task in porting Cich-
lid to new platforms is the adaptation of those two
modules to the target OS. It currently is adapted
to the BSD-style UNIX, IRIX, Linux, and win32
programming environments. While the servers
make use of these modules, they have no inherent
need for a windowing system or graphics libraries,
and may be built on systems without those accou-



PAM2000 8

terments.
The design of Cichlid is centered heavily around

the use of opaque objects. The design does not ex-
pose data structures of an object to other modules;
while this is sometimes awkward in C, since it ne-
cessitates the use of many accessor functions, the
object-oriented design simplifies the maintenance
of the code and the addition of new features. Con-
version to C++ would simplify the design a bit,
and as the C++ implementation in the free “gcc”
compiler suite has come of age, it is a definite pos-
sibility for the future.

The Cichlid client currently lacks an intuitive
user interface. The current user interface is pri-
marily textual, with a myriad of commands being
accessed through single-key inputs in the graphic
window, while the command output comes out on
the system’s “standard output” device. This is
awkward at first, since there are too many com-
mands to intuitively map to single keystrokes, and
it requires switching between the text and stan-
dard output windows to see status messages. Af-
ter a bit of experience, however, the direct, terse
style of command input is convenient and fast to
use, and the graphical display is not cluttered up
with the chit-chat of status messages. The mouse
is used for camera movement and point-and-click
selection. Work is underway to add pop-up menus
and a bona fide status window so that the system
is less daunting to new users.

As previously mentioned, all of the data trans-
port in Cichlid is implemented on top of TCP.
While having a reliable connection simplifies the
system design, the system is not able to adapt the
data stream effectively to account for latency or
packet loss, as is possible with applications that
use UDP. Not much can be done about this — the
data-independence restriction prohibits the Cich-
lid system itself from guessing or interpolating
around losses, as one could acceptably do with
something like a video stream. Additionally, the
client/server protocol operates in a stop-and-wait
manner, without the ability to process concurrent
requests. This simplified the initial implementa-
tion, but makes the visualization very sensitive to
network latency, particularly at high frame rates.
What the protocol needs is some sort of pipelin-
ing ability; this can be added in the future with
minimal, if any, modification to the server writers’

interface, because they interact strictly with data
objects, irrespective of the “wire” protocol.

While the Cichlid system allows one client to be
connected to many servers at once, currently, each
server can only handle a single client connection
at a time. This will be improved in the future,
with minimal changes to the server API.

V. What’s Next

There are many opportunities for making im-
provements to Cichlid: particularly the addition
of a more intuitive user interface, and convenience
features such as the ability to save and restore
the state of a visualization across invocations of
the client. We also would like to add new data
models to the toolkit, which would allow for new
types of visualizations, and to continue to improve
the current models in response to requests from
our users. In addition, we’d like to add some
graphical niceties to the design, such as support
for simple bit-mapped textures, and the ability
to save output in a vector-graphic format (such
as PostScript) that is more amenable to printing
than bitmaps.

Some portions of the internal architecture, such
as the client-server protocol, are implemented
in naive ways that reduce the scalability and
throughput of the tool. While these internal me-
chanics could use some improvements, changes of
this type are not necessary for the basic function-
ality of the tool, and they can be implemented
in an incremental fashion without intervention by
the visualization designers.

All processes in Cichlid are single-threaded.
This eases portability, particularly to systems
without POSIX-threads, but creates some compli-
cated nonblocking service loops. Portions of the
system, particularly the client, may be converted
to use threads in the future.

The modular design of Cichlid does not pre-
clude the addition of these or other improvements.
It does, however, make it difficult to introduce
application-specific behavior on the client side;
this is actually a feature of the design, since we
have strived for generality and reusability.

In conclusion, Cichlid has been used in a num-
ber of network analysis projects, including those
at NLANR and other organizations. The Cich-
lid visualization system has proved helpful in un-



PAM2000 9

derstanding network behavior and in highlight-
ing anomalies. It has been particularly useful
in demonstrations, as shown at recent Supercom-
puting conferences, where it enabled attendees to
quickly understand the data being presented. The
Cichlid architecture, which minimizes the work re-
quired to create new visualizations, allowed these
demonstrations to be developed in just a few
weeks. Building on this success, the improvements
we have planned will further enhance the useful-
ness of Cichlid as an analysis tool.

References
[1] http://moat.nlanr.net/.
[2] A.J. McGregor, H-W. Braun, and J.A. Brown, “The

NLANR network analysis infrastructure,” IEEE Commu-
nicarions Magazine, May 2000, to be published.

[3] A.J. McGregor and H-W. Braun, “Balancing cost
and utility in active monitoring: The AMP exam-
ple.,” INET 2000, June 2000, submitted, also at
http://byerley.cs.waikato.ac.nz/ tonym/papers/inet2000.

[4] http://moat.nlanr.net/Software/Cichlid/.
[5] http://www.opengl.org/.
[6] http://reality.sgi.com/opengl/glut3/glut3.html.
[7] http://www.mesa3d.org/.


